
FACTORS OF HYPERCONTRACTIONS

MONOJIT BHATTACHARJEE AND B. KRISHNA DAS

Abstract. In this article, we study a class of contractive factors of m-hypercontractions
for m ∈ N. We find a characterization of such factors and it is achieved by finding explicit
dilations of these factors on certain weighted Bergman spaces. This is a generalization of the
work done in [13].

1. Introduction

The structure of a commuting n-tuple of isometries (n ≥ 2) is complicated compared to
that of a single isometry as an isometry always decomposes into a shift and a unitary due to
von Neumann and Wold (cf. [19]). Not much is known except for the BCL representation for
n-tuples of commuting isometries with product being a pure isometry (see [5, 6, 7, 8, 11, 16, 17]
and references therein), that is for commuting isometries (V1, . . . , Vn) on H with

∩k≥0V
k

1 V
k

2 · · ·V k
nH = {0}.

The structure theorem of such isometries also reveals all possible isometric factors of a pure
isometry (see [8] for more details). Following this, the analysis of finding factors has been
extended further to the case of contractions in [13]. A characterization of contractive factors
of a pure contraction is obtained, by Sarkar, Sarkar and the second author of this atricle,
in [13] and subsequently in [21] for general contractions. It is also worth mentioning here
that the key to obtaining such a characterization is an explicit Ando type dilation result
which is motivated by a recent technique of explicit dilations of commuting contractions [12].
It is then natural to ask the following question: How to characterize contractive factors
of m-hypercontractions? In this article, we answer this question and obtain a complete
description for a class of contractive factors of m-hypercontractions. Our characterization
for contractive factors of m-hypercontractions yields a similar characterization for a class of
contractive factors of subnormal operators. To describe these results succinctly, we develop
some background material next.

For a Hilbert space E and n ∈ N, the E-valued weighted Bergman space over the unit disc
D, denoted by A2

n(E), is defined as

A2
n(E) = {f ∈ O(D, E) : f(z) =

∞∑
k=0

f̂(k)zk, ‖f‖2
n =

∞∑
k=0

(wn,k)−1‖f̂(k)‖2
E <∞},
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where the sequence of weights {wn,k}k≥0 is given by

(1− x)−n =
∞∑
k=0

wn,kx
k (|x| < 1).

The space A2
n(E) is also a reproducing kernel Hilbert space with kernel

Kn(z, w) = (1− zw̄)−nIE (z, w ∈ D).

For the base case n = 1, the space A2
1(E) is the Hardy space over the unit disc which we

denote by H2
E(D) and we denote the corresponding kernel, known as the Szegö kernel, by

S(z, w) = (1− zw̄)−1IE (z, w ∈ D).

If E = C, then we denote simply by A2
n the C-valued weighted Bergman space over the

unit disc. Using Bergman kernels Agler, in his seminal paper [2], introduced the notion
of m-hypercontractions (m ∈ N) as follows. A bounded linear operator T on H is an m-
hypercontraction if

K−1
n (T, T ∗) =

n∑
k=0

(−1)k
(
n
k

)
T kT ∗k ≥ 0,

for n = 1,m. In addition, if T ∗n → 0 in the strong operator topology then T is said to be a pure
m-hypercontraction. It is important to note that the positivity K−1

n (T, T ∗) ≥ 0 for n = 1,m
also implies all the intermediate positivity, that is K−1

n (T, T ∗) ≥ 0 for all n = 1, . . . ,m
([18]). This shows that if T is an m-hypercontraction then it is also an n-hypercontraction
for n = 1, . . . ,m. The defect operators and the defect spaces of an m-hypercontraction T on
H are defined by

Dn,T =
(
K−1

n (T, T ∗)
) 1

2
and Dn,T = ranDn,T (1 ≤ n ≤ m)(1.1)

respectively. The Bergman shift Mz on A2
m(E), defined by(

Mzf
)
(w) = wf(w) (f ∈ A2

m(E), w ∈ D),

is a purem-hypercontraction. In fact, by [2], Bergman shifts are models for purem-hypercontractions.
To be more precise, Agler proves the following characterization result.

Theorem 1.1. (cf. [2]) If T is an m-hypercontraction on a Hilbert space H then

T ∼= PQ(Mz ⊕W )|Q,

where W is a unitary on a Hilbert spaceR, Q is a (M∗
z⊕W ∗)-invariant subspace of A2

m(Dm,T )⊕
R and Dm,T is the defect space of T as in (1.1). In particular, if T is pure then

T ∼= PQMz|Q,

where Q is a M∗
z -invariant subspace of A2

m(Dm,T ).
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There are now several different approach to this result and to its multivariable generalization
for different domains in Cn (see [1], [3], [9], [10] , [18] and [20]).
Coming back to the context of this article, we denote by Fm(H) the class of contractive factors
of m-hypercontractions on a Hilbert space H which we characterize in this paper. The class
is defined as follows.

Definition 1.2. For m ∈ N and a Hilbert space H, a pair of commuting contractions (T1, T2)
on H is said to be an element of Fm(H) if for i = 1, 2

(1.2) K−1
m−1(T, T ∗)− TiK−1

m−1(T, T ∗)T ∗i ≥ 0,

where T = T1T2 and K0(T, T ∗) = IH.

The positivity condition in the above definition is equivalent to the Szegö positivity of the
commuting m-tuple

Ti = ( T, . . . , T︸ ︷︷ ︸
(m−1)−times

, Ti)

for i = 1, 2. Here an n-tuple of commuting contraction T = (T1, . . . , Tn) satisfies Szegö
positivity if

S−1
n (T , T ∗) =

∑
F⊂{1,...,n}

(−1)|F |TFT ∗F ≥ 0,

where for F ⊂ {1, . . . , n}, TF =
∏

i∈F Ti. If m = 1, it follows that F1(H) is the class of all
commuting contractive operator pairs on H. For (T1, T2) ∈ Fm(H), we show that the product
T = T1T2 is an m-hypercontraction on H. In other words, for any m ∈ N, Fm(H) contains
contractive factors of m-hypercontractions on H. In particular, the positivity condition (1.2)
is a sufficient condition for the product of a pair of commuting contractions (T1, T2) on H to
be an m-hypercontraction. This sufficient condition is not necessary (see the counterexample
obtain in Section 6). The goal of this article is to present a complete description of the class of
contractive factors Fm(H) of m-hypercontractions. One such explicit descriptions we obtain
is as follows. For a Hilbert space E , an operator valued analytic function Φ : D → B(E) is a
B(E)-valued Schur function on D if

supz∈D‖Φ(z)‖ ≤ 1.

Theorem. If T is a m-hypercontraction on a Hilbert space H, then the following are equiv-
alent:

(i) T = T1T2 for some (T1, T2) ∈ Fm(H);
(ii) there exist a pair of commuting unitaries (W1,W2) on a Hilbert spaceR with W = W1W2

and a pair of B(E)-valued Schur functions on D

Φ(z) = (P + zP⊥)U∗, and Ψ(z) = U(P⊥ + zP ), (z ∈ D)

corresponding to a triple (E , U, P ) consisting of a Hilbert space E, a unitary U on E and an
orthogonal projection P in B(E) such that Q is a joint (M∗

z ⊕ W ∗,M∗
Φ ⊕ W ∗

1 ,M
∗
Ψ ⊕ W ∗

2 )-
invariant subspace of A2

m(E)⊕R and

T1
∼= PQ(MΦ ⊕W1)|Q, T2

∼= PQ(MΨ ⊕W2)|Q, T ∼= PQ(Mz ⊕W )|Q.
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Moreover, if T is a pure m-hypercontraction, then the Hilbert space R = {0}.

This theorem is proved in Section 5 as Theorem 5.1 and is obtained by finding a suitable and
explicit dilation of commuting contractive operator triple (T1, T2, T1T2), (T1, T2) ∈ Fm(H), on
some weighted Bergman space. At the same time, the explicit dilations of triples relies on
a Douglus type dilations of m-hypercontractions and a commutant lifting technique found
in [13]. The above factorization result, in turn, also provides a similar factorization result for
subnormal operators and, for m = 1, it recovers the characterization of contractive factors of
contractions obtained in [13] and [21].

The plan of the paper is as follows. Section 2 contains Douglus type dilations for m-
hypercontractions. We study different properties of Fm(H) in Section 3. In Section 4, we
find suitable explicit dilations for the class of factors in Fm(H). This is then used to obtain
several factorization results in Section 5. In the last section, we find examples of factors of
m-hypercontractions on H which are not elements of Fm(H).

2. Douglas type dilations for hypercontractions

Ever since Sz.-Nagy and Foias discovered unitary dilations of contractions, several explicit
constructions of such unitary dilations have been obtained. One such construction is due to
Douglas [14]. Here we carry out a similar construction for m-hypercontrcations and obtain
Douglas type dilations for m-hypercontractions. Our explicit construction of Douglas type
dilations for m-hypercontractions seems to be new and it is used to obtain dilations of factors
of m-hypercontractions.

Recall that a linear operator T on H is a m-hypercontraction if for n = 1, . . . ,m,

K−1
n (T, T ∗) =

n∑
k=0

(−1)k
(
n
k

)
T kT ∗k ≥ 0.

Also for n = 1, . . . ,m, n-th order defect operator and defect space are

Dn,T = K−1
n (T, T ∗)1/2 and Dn,T = ranDn,T ,

respectively. The sequence of weights {wn,k}∞k=0 given by

(1− x)−n =
∞∑
k=0

wn,kx
k, (|x| < 1, n ∈ N ∪ {0})

plays a crucial role in what follows and we invoke a lemma from [2] which describes certain
relationship of these weights for different values of n.

Lemma 2.1 (cf [2]). Let {wn,k}k≥0,n≥0 be as above. Then for all n, k ≥ 1,

wn,k − wn,k−1 = wn−1,k.

For a fixed n with 1 ≤ n ≤ m, consider an orthonormal basis {ψn,k(z) =
√
wn,kz

k}∞k=0 for

the weighted Bergman space A2
n. Then the kernel function of A2

n is given by

Kn(z, w) = (1− zw̄)−n =
∞∑
k=0

ψn,k(w)ψn,k(z) (z, w ∈ D).
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We set, for r ≥ 0,

f (n)
r (z, w) :=

∞∑
k=r

ψn,k(z)K−1
n (z, w)ψn,k(w) (z, w ∈ D).

Then it can be easily seen that f
(n)
0 ≡ 1 and

f
(n)
j (z, w) = 1−

j−1∑
k=0

ψn,k(z)K−1
n (z, w)ψn,k(w), (j ≥ 1)

and consequently, f
(n)
r is a polynomial for all r ≥ 0. As a result, using polynomial calculus,

we define

f (n)
r (T, T ∗) := 1−

r−1∑
k=0

wn,kT
kK−1

n (T, T ∗)T ∗k, (r ≥ 0, 1 ≤ n ≤ m)

for any m-hypercontraction T on H. These operators are used to study the canonical dilation
map Πm,T : H → A2

m(DT ) defined by

(Πm,Th)(z) = Dm,T (IH − zT ∗)−mh, (h ∈ H, z ∈ D)(2.1)

corresponding to an m-hypercontraction T on H. The next proposition shows that the canon-
ical dilation map Πm,T is a contraction and it is analogous to Proposition 10 in [3] for the
case when T is a pure m-hypercontraction.

Proposition 2.2. In the above setting, we have the following:

(i) For any n with 1 ≤ n ≤ m, the sequence {f (n)
r (T, T ∗)}∞r=0 is a decreasing sequence of

positive operators.

(ii) ‖Πm,Th‖2 = ‖h‖2 − limr→∞〈f (m)
r (T, T ∗)h, h〉 (h ∈ H).

Proof. It is clear from the definition that {f (n)
r (T, T ∗)}∞r=0 is a decreasing sequence for n =

1, . . . ,m. For the positivity, it follows from Lemma 2.1 and the discussion succeeding it that
for all r ≥ 0 and 1 ≤ n ≤ m,

f (n)
r (T, T ∗) = 1−

r−1∑
k=0

wn,kT
kK−1

n (T, T ∗)T ∗k

= 1−
r−1∑
k=0

wn,kT
k
(
K−1

n−1(T, T ∗)− TK−1
n−1(T, T ∗)T ∗

)
T ∗k

= 1− wn,0K
−1
n−1(T, T ∗)−

r−1∑
k=1

(wn,k − wn,k−1)T kK−1
n−1(T, T ∗)T ∗k

+ wn,r−1T
rK−1

n−1(T, T ∗)T ∗r

= f (n−1)
r (T, T ∗) + wn,r−1T

rK−1
n−1(T, T ∗)T ∗r.(2.2)
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Since wn,r−1T
rK−1

n−1(T, T ∗)T ∗r ≥ 0, we conclude that f
(n)
r (T, T ∗) ≥ f

(n−1)
r (T, T ∗) for all r ≥ 0

and for n = 1, . . . ,m. As a result, we also have

f (n)
r (T, T ∗) ≥ f (n−1)

r (T, T ∗) ≥ · · · ≥ f (1)
r (T, T ∗) = T rT ∗r ≥ 0.

This proves that {f (n)
r (T, T ∗)}∞r=0 is a decreasing sequence of positive operators. The proof of

(ii) is verbatim with the proof of Proposition 10 in [3].

By the above result, we denote the strong operator limit of the sequence {f (n)
r (T, T ∗)}∞r=0

and its range as

(2.3) Q2
n,T := SOT− lim

r→∞
f (n)
r (T, T ∗) Qn,T = ranQn,T (1 ≤ n ≤ m).

It should be noted that if T is a pure m-hypercontraction then

SOT− lim
r→∞

f (m)
r (T, T ∗) = SOT− lim

r→∞
f (m−1)
r (T, T ∗) = · · · = SOT− lim

r→∞
f (1)
r (T, T ∗) = 0.

This can be derived from the identity (2.2) and from the fact that wn,r−1T
rK−1

n−1(T, T ∗)T ∗r →
0 in the strong operator topology (see Lemma 2.11 in [2]). Thus the canonical dilation map
Πm,T is an isometry if and only if T is a pure m-hypercontraction. The intertwining property
of Πm,T , that is Πm,TT

∗ = M∗
z Πm,T where Mz is the shift on A2

m(Dm,T ), is evident from the
definition of Πm,T .

Before we present the main theorem of this section, we recall a well-known factorization
result due to Douglas.

Lemma 2.3. (cf. [15]) Let A and B be two bounded linear operators on a Hilbert space H.
Then there exists a contraction C on H such that A = BC if and only if

AA∗ ≤ BB∗.

The explicit construction of Douglas type dilation for m-hypercontractions is given next.

Theorem 2.4. If T ∈ B(H) is an m-hypercontraction, then there exist a Hilbert space R, an
isometry ΠT : H → A2

m(Dm,T )⊕R and a unitary W on R such that

ΠTT
∗ = (M∗

z ⊕W ∗)ΠT .

In particular,

T ∼= PQ(Mz ⊕W )|Q,
where Q = ranΠT is the (Mz ⊕W )∗-invariant subspace of A2(Dm,T )⊕R.

Proof. Let Qn,T be the positive operator as in (2.3) for all 1 ≤ n ≤ m. By induction on n, we
prove that

TQ2
n,TT

∗ = Q2
n,T (n = 1, . . . ,m).

It is easy to see that it holds for n = 1. Then we assume that the identity holds for some n

with 1 ≤ n < m. Thus by the assumption f
(n)
r+1(T, T ∗) − Tf (n)

r+1(T, T ∗)T ∗ → 0 in the strong
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operator topology as r →∞. Now,

f
(n+1)
r+1 (T, T ∗)− Tf (n+1)

r (T, T ∗)T ∗

= I − TT ∗ −K−1
n+1(T, T ∗) +

r−1∑
k=0

(wn+1,k − wn+1,k+1)T k+1K−1
n+1(T, T ∗)T ∗(k+1)

= I − TT ∗ −K−1
n+1(T, T ∗)−

r−1∑
k=0

wn,k+1T
k+1K−1

n+1(T, T ∗)T ∗(k+1)

= I − TT ∗ − (K−1
n (T, T ∗)− TK−1

n (T, T ∗)T ∗)

−
r−1∑
k=0

wn,k+1T
k+1
(
K−1

n (T, T ∗)− TK−1
n (T, T ∗)T ∗

)
T ∗(k+1)

=
(
I −

r∑
k=0

wn,kT
kK−1

n (T, T ∗)T ∗k
)
−
(
TT ∗ −

r∑
k=0

wn,kT
k+1K−1

n (T, T ∗)T ∗(k+1)
)

= f
(n)
r+1(T, T ∗)− Tf (n)

r+1(T, T ∗)T ∗.

Consequently by the induction hypothesis, f
(n+1)
r+1 (T, T ∗)−Tf (n+1)

r (T, T ∗)T ∗ → 0 in the strong
operator topology as r →∞. This in turn implies that

TQ2
n+1,TT

∗ = Q2
n+1,T .

Thus we have proved that TQ2
n,TT

∗ = Q2
n,T for n = 1, . . . ,m. In particular, since TQ2

m,TT
∗ =

Q2
m,T , by Lemma 2.3, there exists an isometry X∗ on Qm,T such that

X∗Qm,T = Qm,TT
∗.(2.4)

Let W ∗ on R ⊇ Qm,T be the minimal unitary extension of X∗ ( [19]). Then, by Proposi-
tion 2.2, the map ΠT : H → A2

m(Dm,T )⊕R defined by

ΠTh = (Πm,Th,Qm,Th), (h ∈ H)

is an isometry and it also satisfies

ΠTT
∗ = (Mz ⊕W )∗ΠT .

Here the intertwining property follows from (2.4). Therefore, Q = ranΠT is an (Mz ⊕W )∗-
invariant subspace of A2

m(Dm,T )⊕R and

T ∼= PQ(Mz ⊕W )|Q.
This completes the proof.

3. The class Fm(H)

The class of contractive factors Fm(H) and its basic properties are studied in this section.
To begin with we recall the definition of the class Fm(H). A commuting pair of contractions
(T1, T2) on H is in Fm(H) if K−1

m−1(T, T ∗)−TiK−1
m−1(T, T ∗)T ∗i ≥ 0 for i = 1, 2, where T = T1T2.
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For (T1, T2) ∈ Fm(H) with T = T1T2, we fix the following notations for the rest of the
article:

D2
n,T,Ti

= K−1
n−1(T, T ∗)− TiK−1

n−1(T, T ∗)T ∗i and Dn,T,Ti
= ranD2

n,T,Ti
(n ∈ N, i = 1, 2).(3.5)

With the above notation, we have the following useful identity

D2
n,T,Ti

− TD2
n,T,Ti

T ∗

= K−1
n−1(T, T ∗)− TK−1

n−1(T, T ∗)T ∗ − Ti
(
K−1

n−1(T, T ∗)− TK−1
n−1(T, T ∗)T ∗

)
T ∗i

= K−1
n (T, T ∗)− TiK−1

n (T, T ∗)T ∗i

= D2
n+1,T,Ti

,(3.6)

for all n ≥ 0. Next we show an intermediate positivity type result.

Lemma 3.1. If (T1, T2) ∈ Fm(H) then (T1, T2) ∈ Fn(H) for all 1 ≤ n ≤ m.

Proof. It is enough to show that D2
n,T,Ti

≥ 0 for n = 1, . . . ,m and for i = 1, 2. We only

consider the case i = 1 as it is symmetrical for i = 2. By the hypothesis D2
m,T,T1

≥ 0 and

D2
1,T,T1

≥ 0. To show D2
(m−1),T,T1

≥ 0, we assume that m ≥ 2 and consider the sequence

{ar}∞r=0, corresponding to a fixed h ∈ H, as

ar = 〈T rD2
(m−1),T,T1

T ∗rh, h〉 (r ≥ 0).

Then for any r ≥ 0, using (3.6), we have

ar − ar+1 = 〈T r(D2
(m−1),T,T1

− TD2
(m−1),T,T1

T ∗)T ∗rh, h〉
= 〈T rD2

m,T,T1
T ∗rh, h〉 ≥ 0.

Thus {ar}∞r=0 is a decreasing sequence. Also since∣∣∣ N∑
r=0

ar

∣∣∣ =
∣∣∣〈 N∑

r=0

T r(D2
(m−2),T,T1

− TD2
(m−2),T,T1

T ∗)T ∗rh, h
〉∣∣∣

=
∣∣∣〈(D2

(m−2),T,T1
− TN+1D2

(m−2),T,T1
T ∗(N+1))h, h

〉∣∣∣
≤ 2‖h‖2‖D2

(m−2),T,T1
‖,

ar ≥ 0 for all r ≥ 0. In particular, it implies that D2
(m−1),T,T1

≥ 0. Therefore, by induction on
m, we have all the required positivity. This completes the proof.

Needless to say that the product of two commuting contractions is not anm-hypercontraction,
in general. We find a sufficient condition for product of two commuting contractions to be
an m-hypercontraction. The sufficient condition is simply that the pair of contractions on H
should be an element of Fm(H). This is proved in the next lemma, which is in the same spirit
as Lemma 3.1 in [4].

Lemma 3.2. If (T1, T2) ∈ Fm(H), then T1T2 is a m-hypercontraction.
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Proof. Let T = T1T2. The proof is obvious for m = 1. For m ≥ 2 note that

K−1
m (T, T ∗)

= Km−1(T, T ∗)− TK−1
m−1(T, T ∗)T ∗

=
(
K−1

m−1(T, T ∗)− T ∗1K−1
m−1(T, T ∗)T ∗1

)
+ T1

(
K−1

m−1(T, T ∗)− T ∗2K−1
m−1(T, T ∗)T ∗2

)
T ∗1 ≥ 0.

This completes the proof.

The converse of this lemma is not true (see the counterexample in the last section). This
suggests that Fm(H) does not contain all the factors of m-hypercontractions. Before going
further, we consider elementary examples of elements in Fm(H). These examples are based on
a triple (E , U, P ) consists of a Hilbert space E , a unitary operator U on E and an orthogonal
projection P in B(E). For such a triple, the B(E)-valued analytic functions

Φ(z) = (P + zP⊥)U∗, and Ψ(z) = U(P⊥ + zP ) (z ∈ D)

are easily seen to be Schur functions on D, that is Φ and Ψ are in the unit ball of the Banach
algebra H∞B(E)(D) consisting of bounded B(E)-valued analytic functions on D. It is also easy
to see that

Φ(z)Ψ(z) = Ψ(z)Φ(z) = zIE (z ∈ D).

We refer to Φ,Ψ as canonical pair of Schur functions on D corresponding to the triple (E , U, P ).
We claim that the commuting pair of multiplication operators (MΦ,MΨ) on A2

m(E) is an
element of Fm(A2

m(E)). Indeed, if E1 = ranP and E2 = ranP⊥ then E = E1⊕E2. With respect
to this decomposition of the co-efficient space E , we have A2

m(E) = A2
m(E1)⊕ A2

m(E2) and

Km−1(Mz,M
∗
z )−MΦKm−1(Mz,M

∗
z )M∗

Φ

= Km−1(Mz,M
∗
z )−

[
IA2

m(E1) 0
0 Mz ⊗ IE2

]
(I ⊗ U∗)Km−1(Mz,M

∗
z )(I ⊗ U)

[
IA2

m(E1) 0
0 M∗

z ⊗ IE2

]
= Km−1(Mz,M

∗
z )−

[
IA2

m(E1) 0
0 Mz ⊗ IE2

]
Km−1(Mz,M

∗
z )

[
IA2

m(E1) 0
0 M∗

z ⊗ IE2

]
=

[
0 0
0 Km(Mz ⊗ IE2 ,M∗

z ⊗ IE2)

]
≥ 0,

as Mz ⊗ IE2 on A2
m(E2) is an m-hypercontraction. Similarly, we have

Km−1(Mz,M
∗
z )−MΨKm−1(Mz,M

∗
z )M∗

Ψ ≥ 0.

This proves the claim. In fact we will see below that any pair (T1, T2) ∈ Fm(H) with T1T2 is
pure dilates to such a pair (MΦ,MΨ) on A2

m(E), and therefore these operator pairs serve as a
model operator for a class of contractive factors of pure m-hypercontractions.

4. Dilation of factors

Our main concern is to propose a model for the class Fm(H) of contractive factors of m-
hypercontractions. This is achieved by finding an explicit dilation of a triple of commuting
contractions (T1, T2, T1T2) on some weighted Bergman space, where (T1, T2) ∈ Fm(H). We say
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that an n-tuple of commuting contractions (T1, . . . , Tn) on H dilates to a commuting n-tuple
of operators (R1, . . . , Rn) on K if there is an isometry Π : H → K, such that

ΠT ∗i = R∗i Π (i = 1, . . . , n).

The map Π is often refer as the dilation map.
We prove a lemma which will be the key to the dilations obtained in this section. This

lemma is analogous to Theorem 2.1 in [13]. Let (T1, T2) ∈ Fm(H). Since T = T1T2 is an
m-hypercontraction, the canonical dilation map Πm,T : H → A2

m(Dm,T ) defined by

(Πm,Th)(z) = Dm,T (I − zT ∗)−mh (h ∈ H, z ∈ D),

satisfies Πm,TT
∗ = M∗

z Πm,T . If V : Dm,T → E is a isometry for some Hilbert space E , then
the map

ΠV := (I ⊗ V )Πm,T : H → A2
m(E)

also intertwines with T ∗ and M∗
z on A2

m(E), that is ΠV T
∗ = M∗

z ΠV .

Lemma 4.1. With the above notation, if D is a Hilbert space and if

Ui =

[
Ai Bi

Ci 0

]
: E ⊕ (D ⊕Dm,T,Ti

)→ E ⊕ (D ⊕Dm,T,Ti
) (i = 1, 2)

is a unitary operator such that for all h ∈ H,

Ui

(
V Dm,Th, 0D, Dm,T,Ti

T ∗h
)

=
(
V Dm,TT

∗
i h, 0D, Dm,T,Ti

h
)
, (i = 1, 2)

then the B(E)-valued Schur function Φi(z) = A∗i + zC∗i B
∗
i (z ∈ D), transfer function corre-

sponding to the unitary U∗i , satisfies

ΠV T
∗
i = M∗

Φi
ΠV ,

for i = 1, 2.

Proof. Since[
Ai Bi

Ci 0

] [
V Dm,Th

(0D, Dm,T,Ti
T ∗h)

]
=

[
V Dm,TT

∗
i h

(0D, Dm,T,Ti
h)

]
, (h ∈ H, i = 1, 2)

we have

AiV Dm,Th+Bi(0D, Dm,T,Ti
T ∗h) = V Dm,TT

∗
i h and CiV Dm,Th = (0D, Dm,T,Ti

h)

for all h ∈ H and i = 1, 2. Simplifying further, we get

V Dm,TT
∗
i = AiV Dm,T +BiCiV Dm,TT

∗

for i = 1, 2. Finally, if n ≥ 1, h ∈ H and η ∈ E , then

〈M∗
Φi

ΠV h, z
nη〉 = 〈(I ⊗ V )Dm,T (1− zT ∗)−mh, (A∗i + zC∗i B

∗
i )(znη)〉

= 〈(AiV Dm,T +BiCiV Dm,T ∗T ∗)T ∗nh, η〉
= 〈V Dm,TT

∗
i (T ∗nh), η〉

= 〈ΠV T
∗
i h, z

nη〉, (i = 1, 2).

Therefore, we get ΠV T
∗
i = M∗

Φi
ΠV for i = 1, 2. This completes the proof.
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Let (T1, T2) ∈ Fm(H) with T = T1T2. Then (see the proof of Lemma 3.2)

K−1
m (T, T ∗) = D2

m,T,T1
+ T1D

2
m,T,T2

T ∗1 = D2
m,T,T2

+ T2D
2
m,T,T1

T ∗2 ,

implies that

‖Dm,T,T1h‖2 + ‖Dm,T,T2T
∗
1 h‖2 = ‖Dm,T,T2h‖2 + ‖Dm,T,T1T

∗
2 h‖2

for all h ∈ H. This leads us to define isometries V : Dm,T → Dm,T,T1 ⊕Dm,T,T2 and

U : {Dm,T,T1T
∗
2 h⊕Dm,T,T2h : h ∈ H} → {Dm,T,T1h⊕Dm,T,T2T

∗
1 h : h ∈ H}

defined by

(4.7) V (Dm,Th) = (Dm,T,T1h,Dm,T,T2T
∗
1 h) (h ∈ H)

and

(4.8) U
(
Dm,T,T1T

∗
2 h,Dm,T,T2h

)
=
(
Dm,T,T1h,Dm,T,T2T

∗
1 h
)
, (h ∈ H)

respectively. We are now ready to prove the explicit dilation result for the pure case.

Theorem 4.2. Let (T1, T2) ∈ Fm(H) be such that T = T1T2 is a pure contraction. Then there
exist a triple (E , U, P ) consists of a Hilbert space E, a unitary U and a projection P in B(E),
and an isometry Π : H → A2

m(E) such that

ΠT ∗1 = M∗
ΦΠ, ΠT ∗2 = M∗

ΨΠ, and ΠT ∗ = M∗
z Π,

where Φ and Ψ are the B(E)-valued canonical Schur functions on D corresponding to the triple
(E , U, P ) given by

Φ(z) = (P + zP⊥)U∗ and Ψ(z) = U(P⊥ + zP )

for all z ∈ D.
In particular, Q = ranΠ is a joint (M∗

Φ,M
∗
Ψ,M

∗
z )-invariant subspace of A2

m(E) such that

T1
∼= PQMΦ|Q, T2

∼= PQMΨ|Q and T ∼= PQMz|Q.

Proof. We first consider the isometry U as in (4.8) and by adding an infinite dimensional
Hilbert space D, if necessary, we extend it to a unitary on E := (D ⊕ Dm,T,T1) ⊕ Dm,T,T2 .
We continue to denote the unitary by U , and therefore we have a unitary U : E → E which
satisfies

U
(
0D, Dm,T,T1T

∗
2 h,Dm,T,T2h

)
=
(
0D, Dm,T,T1h,Dm,T,T2T

∗
1 h
)

(h ∈ H).

Also we view the isometry V in (4.7), as an isometry V : Dm,T → E defined by

V (Dm,Th) = (0D, Dm,T,T1h,Dm,T,T2T
∗
1 h) (h ∈ H).

Since T is a pure m-hypercontraction, then the canonical dilation map Πm,T : H → A2
m(Dm,T )

is an isometry, and as a result

(4.9) ΠV = (I ⊗ V )Πm,T : H → A2
m(E)

is also an isometry. The isometry ΠV will be the dilation map in this context.
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To complete the proof of the theorem, we construct unitaries which satisfy the hypothesis
of Lemma 4.1. To this end, we consider the inclusion maps ι1 : D ⊕ Dm,T,T1 → E and
ι2 : Dm,T,T2 → E defined by

ι1(h, k1) = (h, k1, 0) and i2(k2) = (0, 0, k2), (h ∈ D, k1 ∈ Dm,T,T1 , k2 ∈ Dm,T,T2).

We also consider the orthogonal projection P = ι2ι
∗
2. Then it is easy to check that[

P ι1
ι∗1 0

]
: E ⊕ (D ⊕Dm,T,T1)→ E ⊕ (D ⊕Dm,T,T1)

and [
P⊥ ι2
ι∗2 0

]
: E ⊕ Dm,T,T2 → E ⊕Dm,T,T2

are unitary. The unitary

U1 :=

[
U 0
0 I

] [
P i1
i∗1 0

]
=

[
UP Ui1
i∗1 0

]
: E ⊕ (D ⊕Dm,T,T1)→ E ⊕ (D ⊕Dm,T,T1),

satisfies

U1

[
V Dm,Th
Dm,T,T1T

∗h

]
=

[
UP Ui1
i∗1 0

] [
V Dm,Th
Dm,T,T1T

∗h

]
=

[
U(0D, Dm,T,T1T

∗
2 T
∗
1 h,Dm,T,T2T

∗
1 h)

(0D, Dm,T,T1h)

]
=

[
(0D, Dm,T,T1T

∗
1 h,Dm,T,T2T

∗2
1 h)

(0D, Dm,T,T1h)

]
=

[
V Dm,TT

∗
1 h

(0D, Dm,T,T1h)

]
,

for all h ∈ H. Subsequently, a similar computation also shows that the unitary

U2 :=

[
P⊥ ι2
ι∗2 0

] [
U∗ 0
0 I

]
: E ⊕ Dm,T,T2 → E ⊕Dm,T,T2 ,

satisfies

U2(VDm,Th,Dm,T,T2T
∗h) = (V Dm,TT

∗
2 h,Dm,T,T2h),

for all h ∈ H. The proof now follows by appealing Lemma 4.1 to the unitaries U1 and U2.

Remark 4.3. The converse of the above theorem is also true. That is, if (T1, T2, T ) is a triple
of commuting contractions on H and if (T1, T2, T ) dilates to (MΦ,MΨ,Mz) on A2

m(E) for some
Hilbert space E where Φ and Ψ are B(E)-valued canonical Schur functions on D corresponding
to a triple (E , U, P ), then (T1, T2) ∈ Fm(H) and T = T1T2. This follows immediately from the
fact that (MΦ,MΨ) ∈ Fm(A2

m(E)) and MΦMΨ = MΨMΦ = Mz.

Having obtained explicit dilations for the pure case, we now drop the pure assumption and
find dilations for the general case.
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Theorem 4.4. Let (T1, T2) ∈ Fm(H) with T = T1T2. Then there exist a triple (E , U, P )
consists of a Hilbert space E, a unitary U and an orthogonal projection P in B(H), a Hilbert
space R, a pair of commuting unitaries (W1,W2) on a Hilbert space R with W = W1W2 and
an isometry Π : H → A2

m(E) such that

ΠT ∗1 = (MΦ ⊕W1)∗Π, ΠT ∗2 = (MΨ ⊕W2)∗Π and ΠT ∗ = (Mz ⊕W )∗Π,

where Φ and Ψ are the B(E)-valued canonical Schur function on D corresponding to the triple
(E , U, P ) given by

Φ(z) = (P + zP⊥)U∗ and Ψ(z) = U(P⊥ + zP )

for all z ∈ D.
In particular, Q = ranΠ is a joint (M∗

z ⊕W ∗,M∗
Φ ⊕W ∗

1 ,M
∗
Ψ ⊕W ∗

2 )-invariant subspace of
A2

m(E)⊕R such that

T1
∼= PQ(MΦ ⊕W1)|Q, T2

∼= PQ(MΨ ⊕W2)|Q and T ∼= PQ(Mz ⊕W )|Q.

Proof. Let (E , U, P ) be as in Theorem 4.2, and let V be as in (4.7). Then by the same way
as it is done in the proof of Theorem 4.2, we have

ΠV T
∗
1 = M∗

ΦΠV ,ΠV T
∗
2 = M∗

ΨΠV and ΠV T
∗ = M∗

z ΠV ,(4.10)

where Φ(z) = (P + zP⊥)U∗ and Ψ(z) = U(P⊥ + zP ) for all z ∈ D, ΠV = (I ⊗ V )Πm,T and
Πm,T : H → A2

m(Dm,T ), h 7→ Dm,T (I − zT ∗)−mh is the canonical dilation map. However, note
that ΠV is not an isometry in general. To make it an isometry we follow the construction of
the dilation map as in the proof of Theorem 2.4.

Let Qm,T be the positive operator defined in (2.3) by taking strong operator limit of the

decreasing sequence of positive operators {f (m)
r (T, T ∗)}∞r=0 where

f (m)
r (T, T ∗) = 1−

r−1∑
k=0

wm,kT
kK−1

m (T, T ∗)T ∗k (r ≥ 0).

It also follows from the proof of Theorem 2.4 that

TQ2
m,TT

∗ = Q2
m,T .

We claim here that Q2
m,T ≥ TiQm,TT

∗
i for i = 1, 2. We prove the inequality for i = 1 as the

proof is similar for i = 2. To this end, it is enough to show that

f (m)
r (T, T ∗)− T1f

(m)
r (T, T ∗)T ∗1 ≥ 0,

for all r ≥ 0. For a fixed r ≥ 0, we use induction on m. Since f
(1)
r (T, T ∗) = T rT ∗r, it is easy

to see that the inequality holds for m = 1. We assume that for some 1 ≤ n < m,

f (n)
r (T, T ∗)− T1f

(n)
r (T, T ∗)T ∗1 ≥ 0.
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Now observe that

f (n+1)
r (T, T ∗)

= 1−
r−1∑
k=0

wn+1,kT
k(K−1

n (T, T ∗)− TK−1
n (T, T ∗)T ∗)T ∗k

= 1−K−1
n (T, T ∗)−

r−1∑
k=1

(wn+1,k − wn+1,k−1)T kK−1
n (T, T ∗)T ∗k + wn+1,r−1T

rB−1
n (T, T ∗)T ∗r

=
(
1−

r−1∑
k=0

wn,kT
kK−1

n (T, T ∗)T ∗k
)

+ wn+1,r−1T
rK−1

n (T, T ∗)T ∗r

= f (n)
r (T, T ∗) + wn+1,r−1T

rK−1
n (T, T ∗)T ∗r.

Then this implies

f (n+1)
r (T, T ∗)− T1f

(n+1)
r (T, T ∗)T ∗1

=
(
f (n)
r (T, T ∗)− T1f

(n)
r (T, T ∗)T ∗1

)
+ wn+1,r−1T

r
(
K−1

n (T, T ∗)− T1K
−1
n (T, T ∗)T ∗1

)
T ∗n ≥ 0.

Here we have used the fact that K−1
n (T, T ∗) − T1K

−1
n (T, T ∗)T ∗1 ≥ 0 for n = 1, . . . ,m. This

establishes our claim and therefore, Q2
m,T ≥ TiQ

2
m,TT

∗
i for i = 1, 2. Then by Lemma 2.3, there

exists a contraction Xi on Qm,T such that

X∗i Qm,T = Qm,TT
∗
i (i = 1, 2).(4.11)

Further, since Q2
m,T = TQ2

m,TT
∗, there is an isometry X∗ on Qm,T such that X∗Qm,T =

Qm,TT
∗. It is now evident that X∗ = X∗1X

∗
2 = X∗2X

∗
1 , and therefore X∗i is also an isometry

for i = 1, 2. Let (W ∗
1 ,W

∗
2 ,W

∗) onR ⊃ Qm,T be the minimal unitary extension of (X∗1 , X
∗
2 , X

∗)
with W ∗ = W ∗

1W
∗
2 .

Following Theorem 2.4, consider the map Π : H → A2
m(E)⊕R defined by

Π(h) = (ΠV h,Qm,Th), (h ∈ H).

Then, by Proposition 2.2 and the fact that V is an isometry, it follows that Π is an isometry.
Moreover, it follows from the relations (4.10) and (4.11) that

ΠT ∗1 = (M∗
Φ ⊕W ∗

1 )Π,ΠT ∗2 = (M∗
Ψ ⊕W ∗

2 )Π and ΠT ∗ = (M∗
z ⊕W ∗)Π.

This completes the proof of the theorem.

We conclude the section with a remark which is similar to the pure case.

Remark 4.5. The converse of the above theorem is also true. This follows from the fact that
(MΦ ⊕W1,MΨ ⊕W2) ∈ Fm(A2

m(E)⊕R).
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5. Factorization of hypercontractions

Combining the dilation results, Theorem 4.2 and Theorem 4.4, obtained in the previous
section with Remark 4.3 and Remark 4.5, we get the following immediate characterization of
factors in the class Fm(H).

Theorem 5.1. Let (T1, T2) be a pair of commuting contractions on H. Then the following
are equivalent:

(i) (T1, T2) ∈ Fm(H);
(ii) there exist a pair of commuting unitaries (W1,W2) on a Hilbert spaceR with W = W1W2

and B(E)-valued canonical Schur functions

Φ(z) = (P + zP⊥)U∗ and Ψ(z) = U(P⊥ + zP ), (z ∈ D)

corresponding to a triple (E , U, P ) consisting of a Hilbert space E, a unitary U and an orthog-
onal projection P in B(E) such that Q is a joint (M∗

z ⊕W ∗,M∗
Φ ⊕W ∗

1 ,M
∗
Ψ ⊕W ∗

2 )-invariant
subspace of A2

m(E)⊕R,

T1
∼= PQ(MΦ ⊕W1)|Q, T2

∼= PQ(MΨ ⊕W2)|Q, and T ∼= PQ(Mz ⊕W )|Q.
In particular, if T1T2 is a pure contraction, then the Hilbert space R = {0}.

It is now clear that the above theorem is obtained by realizing a factor (T1, T2) ∈ Fm(H)
on the dilation space A2

m(E)⊕R of T = T1T2. However, one would expect to realize (T1, T2)
on the canonical dilation space of T as in Theorem 2.4.

To this end, we first consider (T1, T2) ∈ Fm(H) with T = T1T2 is a pure contraction. Let
ΠV be the dilation map as in Theorem 4.2, that is

ΠV T
∗
1 = M∗

ΦΠV ,ΠV T
∗
2 = M∗

ΨΠV and ΠV T
∗ = M∗

z ΠV

and, by (4.9),
ΠV = (I ⊗ V )Πm,T ,

where Πm,T is the isometric canonical dilation map corresponding to the purem-hypercontraction
T and V : Dm,T → E is an isometry. Then, by the definition of ΠV , the above intertwining
relations yield

Πm,TT
∗
1 = (I ⊗ V ∗)M∗

Φ(I ⊗ V )Πm,T and Πm,TT
∗
2 = (I ⊗ V ∗)M∗

Ψ(I ⊗ V )Πm,T .

Set
Φ̃(z) := V ∗Φ(z)V and Ψ̃(z) := V ∗Ψ(z)V, (z ∈ D).

Then Φ̃ and Ψ̃ are B(Dm,T )-valued Schur functions on D such that

Πm,TT
∗
1 = M∗

Φ̃
Πm,T ,Πm,TT

∗
2 = M∗

Ψ̃
Πm,T .

Observant reader may have noticed that Φ̃ and Ψ̃ do not commute, in general. However,
PQMΦ̃|Q and PQMΨ̃|Q commute with each other and

PQMz|Q = PQMΦ̃MΨ̃|Q = PQMΨ̃MΦ̃|Q,
where Q = ranΠm,T . Thus we have proved the following:

Theorem 5.2. Let T be a pure m-hypercontraction on H. Then the following are equivalent.
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(i) T = T1T2 for some (T1, T2) ∈ Fm(H);
(ii) there exist B(Dm,T )-valued Schur functions

Φ̃(z) = V ∗(P + zP⊥)U∗V, and Ψ̃(z) = V ∗U(P⊥ + zP )V (z ∈ D)

for some Hilbert space E, isometry V : Dm,T → E, unitary U : E → E and projection
P in B(E) such that Q is a joint (M∗

Φ̃
,M∗

Ψ̃
)-invariant subspace of A2

m(Dm,T ),

PQMz|Q = PQMΦ̃Ψ̃|Q = PQMΨ̃Φ̃|Q,

and

T1
∼= PQMΦ̃|Q, and T2

∼= PQMΨ̃|Q.

We also have the following analogous result for general m-hypercontractions.

Theorem 5.3. Let T be an m-hypercontraction on H. Then the following are equivalent.

(i) T = T1T2 for some (T1, T2) ∈ Fm(H);
(ii) there exist a commuting pair of unitaries (W1,W2) on a Hilbert space R with W =

W1W2 and B(Dm,T )-valued Schur functions

Φ̃(z) = V ∗(P + zP⊥)U∗V, and Ψ̃(z) = V ∗U(P⊥ + zP )V (z ∈ D)

for some Hilbert space E, isometry V : Dm,T → E, unitary U : E → E and projection P
in B(E) such that Q is a joint (M∗

Φ̃
⊕W ∗

1 ,M
∗
Ψ̃
⊕W ∗

2 )-invariant subspace of A2
m(Dm,T )⊕

R,

PQ(Mz ⊕W )|Q = PQ(MΦ̃Ψ̃ ⊕W )|Q = PQ(MΨ̃Φ̃ ⊕W )|Q,
and

T1
∼= PQ(MΦ̃ ⊕W1)|Q, and T2

∼= PQ(MΨ̃ ⊕W2)|Q.

An immediate consequence of the above results is a similar factorization result for subnormal
operators. Recall that an operator is subnormal if it has a normal extension. A well-known
characterization of subnormal operators due to Agler is the following: a contraction T on a
Hilbert space H is subnormal if and only if T is an m-hypercontraction for all m ∈ N (see [2]).
We set

F∞(H) :=
⋂
m

Fm(H).

By the above characterization, if (T1, T2) ∈ F∞(H) then T = T1T2 is a subnormal operator.
Thus F∞(H) contains contractive factors of subnormal operators on H. A characterization
of F∞(H) is in order.

Theorem 5.4. Let T be a subnormal operator on H. Then the following are equivalent.

(i) T = T1T2 for some (T1, T2) ∈ F∞(H);
(ii) for each m ∈ N, there exist a commuting pair of unitaries (W1,m,W2,m) on a Hilbert

space Rm with Wm = W1,mW2,m and B(Dm,T )-valued Schur functions

Φ̃m(z) = V ∗m(Pm + zP⊥m)U∗mVm, and Ψ̃m(z) = V ∗mUm(P⊥m + zPm)Vm (z ∈ D)
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for some Hilbert space Em, isometry Vm : Dm,T → Em, unitary Um : Em → Em and
projection Pm in B(Em) such that Qm is a joint (M∗

Φ̃m
⊕W ∗

1,m,M
∗
Ψ̃m
⊕W ∗

2,m)-invariant

subspace of A2
m(Dm,T )⊕Rm,

PQm(Mz ⊕Wm)|Qm = PQm(MΦ̃mΨ̃m
⊕Wm)|Qm = PQm(MΨ̃mΦ̃m

⊕Wm)|Qm ,

and

T1
∼= PQm(MΦ̃m

⊕W1,m)|Qm , and T2
∼= PQm(MΨ̃m

⊕W2,m)|Qm .

6. Examples and concluding remark

In this section, we find an example of a pair of commuting 2× 2 contractive matrices such
that their product is a 2-hypercontraction but the pair fails to belong in F2(C2).

Example: For a real number r with 0 < r ≤ 1, consider a 2 × 2 matrix Tr :=

[
0 r
0 0

]
.

Then by a direct calculation, it can be checked that Tr is a 2-hypercontraction if and only

if r2 ≤ 1
2
. Also for strictly positive real numbers a and b, consider the matrix S =

[
a b
0 a

]
.

Then S is an invertible matrix and S commutes with Tr for any r. Thus, for r ≤ 1√
2
, TrS

−1

and S are factors of the 2-hypercontraction Tr. On the other hand, again by a simple direct
calculation, we have

(6.12) K−1
1 (Tr, T

∗
r )− SK−1

1 (Tr, T
∗
r )S∗ =

[
(1− r2)(1− a2)− b2 −ab

−ab 1− a2

]
.

Also note that S is a contraction if and only if b ≤ 1−a2. So for the particular choice r = 1√
2
,

a = 1√
2

and b = 1
2
, we see that Tr is a 2-hypercontraction, S and TrS

−1 are contractions and

K−1
1 (Tr, T

∗
r )− SK−1

1 (Tr, T
∗
r )S∗ =

[
0 − 1

2
√

2

− 1
2
√

2
1
2

]
is not a positive matrix. Therefore for such a particular choice, the contractions TrS

−1 and
S are factors of the 2-hypercontraction Tr but (TrS

−1, S) /∈ F2(C2).
The above example shows that Fm(H) does not contain all the contractive factors of m-

hypercontractions on H and the present article characterise a subclass of contractive factors
of m-hypercontractions, namely Fm(H). We conclude the paper with the following natural
question: How to characterize all the contractive factors of m-hypercontractions?
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